Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Atypical thioredoxins in poplar: the glutathione-dependent thioredoxin-like 2.1 supports the activity of target enzymes possessing a single redox active cysteine.

Identifieur interne : 002B93 ( Main/Exploration ); précédent : 002B92; suivant : 002B94

Atypical thioredoxins in poplar: the glutathione-dependent thioredoxin-like 2.1 supports the activity of target enzymes possessing a single redox active cysteine.

Auteurs : Kamel Chibani [France] ; Lionel Tarrago ; José Manuel Gualberto ; Gunnar Wingsle ; Pascal Rey ; Jean-Pierre Jacquot ; Nicolas Rouhier

Source :

RBID : pubmed:22523226

Descripteurs français

English descriptors

Abstract

Plant thioredoxins (Trxs) constitute a complex family of thiol oxidoreductases generally sharing a WCGPC active site sequence. Some recently identified plant Trxs (Clot, Trx-like1 and -2, Trx-lilium1, -2, and -3) display atypical active site sequences with altered residues between the two conserved cysteines. The transcript expression patterns, subcellular localizations, and biochemical properties of some representative poplar (Populus spp.) isoforms were investigated. Measurements of transcript levels for the 10 members in poplar organs indicate that most genes are constitutively expressed. Using transient expression of green fluorescent protein fusions, Clot and Trx-like1 were found to be mainly cytosolic, whereas Trx-like2.1 was located in plastids. All soluble recombinant proteins, except Clot, exhibited insulin reductase activity, although with variable efficiencies. Whereas Trx-like2.1 and Trx-lilium2.2 were efficiently regenerated both by NADPH-Trx reductase and glutathione, none of the proteins were reduced by the ferredoxin-Trx reductase. Only Trx-like2.1 supports the activity of plastidial thiol peroxidases and methionine sulfoxide reductases employing a single cysteine residue for catalysis and using a glutathione recycling system. The second active site cysteine of Trx-like2.1 is dispensable for this reaction, indicating that the protein possesses a glutaredoxin-like activity. Interestingly, the Trx-like2.1 active site replacement, from WCRKC to WCGPC, suppresses its capacity to use glutathione as a reductant but is sufficient to allow the regeneration of target proteins employing two cysteines for catalysis, indicating that the nature of the residues composing the active site sequence is crucial for substrate selectivity/recognition. This study provides another example of the cross talk existing between the glutathione/glutaredoxin and Trx-dependent pathways.

DOI: 10.1104/pp.112.197723
PubMed: 22523226
PubMed Central: PMC3375927


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Atypical thioredoxins in poplar: the glutathione-dependent thioredoxin-like 2.1 supports the activity of target enzymes possessing a single redox active cysteine.</title>
<author>
<name sortKey="Chibani, Kamel" sort="Chibani, Kamel" uniqKey="Chibani K" first="Kamel" last="Chibani">Kamel Chibani</name>
<affiliation wicri:level="3">
<nlm:affiliation>UMR 1136 Lorraine University-INRA, Interactions Arbres-Microorganismes, Institut Fédératif de Recherche 110 Ecosystèmes Forestiers, Agroressources, Bioprocédés, et Alimentation, Faculté des Sciences, Vandoeuvre-lès-Nancy, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR 1136 Lorraine University-INRA, Interactions Arbres-Microorganismes, Institut Fédératif de Recherche 110 Ecosystèmes Forestiers, Agroressources, Bioprocédés, et Alimentation, Faculté des Sciences, Vandoeuvre-lès-Nancy</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Vandœuvre-lès-Nancy</settlement>
<settlement type="city" wicri:auto="agglo">Nancy</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tarrago, Lionel" sort="Tarrago, Lionel" uniqKey="Tarrago L" first="Lionel" last="Tarrago">Lionel Tarrago</name>
</author>
<author>
<name sortKey="Gualberto, Jose Manuel" sort="Gualberto, Jose Manuel" uniqKey="Gualberto J" first="José Manuel" last="Gualberto">José Manuel Gualberto</name>
</author>
<author>
<name sortKey="Wingsle, Gunnar" sort="Wingsle, Gunnar" uniqKey="Wingsle G" first="Gunnar" last="Wingsle">Gunnar Wingsle</name>
</author>
<author>
<name sortKey="Rey, Pascal" sort="Rey, Pascal" uniqKey="Rey P" first="Pascal" last="Rey">Pascal Rey</name>
</author>
<author>
<name sortKey="Jacquot, Jean Pierre" sort="Jacquot, Jean Pierre" uniqKey="Jacquot J" first="Jean-Pierre" last="Jacquot">Jean-Pierre Jacquot</name>
</author>
<author>
<name sortKey="Rouhier, Nicolas" sort="Rouhier, Nicolas" uniqKey="Rouhier N" first="Nicolas" last="Rouhier">Nicolas Rouhier</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22523226</idno>
<idno type="pmid">22523226</idno>
<idno type="doi">10.1104/pp.112.197723</idno>
<idno type="pmc">PMC3375927</idno>
<idno type="wicri:Area/Main/Corpus">002A70</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002A70</idno>
<idno type="wicri:Area/Main/Curation">002A70</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002A70</idno>
<idno type="wicri:Area/Main/Exploration">002A70</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Atypical thioredoxins in poplar: the glutathione-dependent thioredoxin-like 2.1 supports the activity of target enzymes possessing a single redox active cysteine.</title>
<author>
<name sortKey="Chibani, Kamel" sort="Chibani, Kamel" uniqKey="Chibani K" first="Kamel" last="Chibani">Kamel Chibani</name>
<affiliation wicri:level="3">
<nlm:affiliation>UMR 1136 Lorraine University-INRA, Interactions Arbres-Microorganismes, Institut Fédératif de Recherche 110 Ecosystèmes Forestiers, Agroressources, Bioprocédés, et Alimentation, Faculté des Sciences, Vandoeuvre-lès-Nancy, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR 1136 Lorraine University-INRA, Interactions Arbres-Microorganismes, Institut Fédératif de Recherche 110 Ecosystèmes Forestiers, Agroressources, Bioprocédés, et Alimentation, Faculté des Sciences, Vandoeuvre-lès-Nancy</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Vandœuvre-lès-Nancy</settlement>
<settlement type="city" wicri:auto="agglo">Nancy</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tarrago, Lionel" sort="Tarrago, Lionel" uniqKey="Tarrago L" first="Lionel" last="Tarrago">Lionel Tarrago</name>
</author>
<author>
<name sortKey="Gualberto, Jose Manuel" sort="Gualberto, Jose Manuel" uniqKey="Gualberto J" first="José Manuel" last="Gualberto">José Manuel Gualberto</name>
</author>
<author>
<name sortKey="Wingsle, Gunnar" sort="Wingsle, Gunnar" uniqKey="Wingsle G" first="Gunnar" last="Wingsle">Gunnar Wingsle</name>
</author>
<author>
<name sortKey="Rey, Pascal" sort="Rey, Pascal" uniqKey="Rey P" first="Pascal" last="Rey">Pascal Rey</name>
</author>
<author>
<name sortKey="Jacquot, Jean Pierre" sort="Jacquot, Jean Pierre" uniqKey="Jacquot J" first="Jean-Pierre" last="Jacquot">Jean-Pierre Jacquot</name>
</author>
<author>
<name sortKey="Rouhier, Nicolas" sort="Rouhier, Nicolas" uniqKey="Rouhier N" first="Nicolas" last="Rouhier">Nicolas Rouhier</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="eISSN">1532-2548</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Base Sequence (MeSH)</term>
<term>Catalytic Domain (MeSH)</term>
<term>Chloroplast Proteins (genetics)</term>
<term>Chloroplast Proteins (metabolism)</term>
<term>Cysteine (genetics)</term>
<term>Cysteine (metabolism)</term>
<term>Cytosol (metabolism)</term>
<term>Dithionitrobenzoic Acid (chemistry)</term>
<term>Enzyme Activation (MeSH)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Enzymologic (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Glutaredoxins (chemistry)</term>
<term>Glutaredoxins (genetics)</term>
<term>Glutathione (metabolism)</term>
<term>Iron-Sulfur Proteins (genetics)</term>
<term>Iron-Sulfur Proteins (metabolism)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Mutagenesis, Site-Directed (MeSH)</term>
<term>NADP (chemistry)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxidoreductases (genetics)</term>
<term>Oxidoreductases (metabolism)</term>
<term>Plant Cells (metabolism)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plastids (genetics)</term>
<term>Plastids (metabolism)</term>
<term>Populus (enzymology)</term>
<term>Populus (genetics)</term>
<term>Protein Isoforms (genetics)</term>
<term>Protein Isoforms (metabolism)</term>
<term>Recombinant Fusion Proteins (genetics)</term>
<term>Recombinant Fusion Proteins (metabolism)</term>
<term>Solubility (MeSH)</term>
<term>Spectrometry, Mass, Electrospray Ionization (MeSH)</term>
<term>Substrate Specificity (MeSH)</term>
<term>Thioredoxin-Disulfide Reductase (genetics)</term>
<term>Thioredoxin-Disulfide Reductase (metabolism)</term>
<term>Thioredoxins (genetics)</term>
<term>Thioredoxins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>5,5'-Dithiobis(acide 2-nitro-benzoïque) (composition chimique)</term>
<term>Activation enzymatique (MeSH)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Cellules végétales (métabolisme)</term>
<term>Cystéine (génétique)</term>
<term>Cystéine (métabolisme)</term>
<term>Cytosol (métabolisme)</term>
<term>Domaine catalytique (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Ferrosulfoprotéines (génétique)</term>
<term>Ferrosulfoprotéines (métabolisme)</term>
<term>Glutarédoxines (composition chimique)</term>
<term>Glutarédoxines (génétique)</term>
<term>Glutathion (métabolisme)</term>
<term>Gènes de plante (MeSH)</term>
<term>Isoformes de protéines (génétique)</term>
<term>Isoformes de protéines (métabolisme)</term>
<term>Mutagenèse dirigée (MeSH)</term>
<term>NADP (composition chimique)</term>
<term>Oxidoreductases (génétique)</term>
<term>Oxidoreductases (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Plastes (génétique)</term>
<term>Plastes (métabolisme)</term>
<term>Populus (enzymologie)</term>
<term>Populus (génétique)</term>
<term>Protéines chloroplastiques (génétique)</term>
<term>Protéines chloroplastiques (métabolisme)</term>
<term>Protéines de fusion recombinantes (génétique)</term>
<term>Protéines de fusion recombinantes (métabolisme)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Régulation de l'expression des gènes codant pour des enzymes (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Solubilité (MeSH)</term>
<term>Spectrométrie de masse ESI (MeSH)</term>
<term>Spécificité du substrat (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Séquence nucléotidique (MeSH)</term>
<term>Thioredoxin-disulfide reductase (génétique)</term>
<term>Thioredoxin-disulfide reductase (métabolisme)</term>
<term>Thiorédoxines (génétique)</term>
<term>Thiorédoxines (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Dithionitrobenzoic Acid</term>
<term>Glutaredoxins</term>
<term>NADP</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Chloroplast Proteins</term>
<term>Cysteine</term>
<term>Glutaredoxins</term>
<term>Iron-Sulfur Proteins</term>
<term>Oxidoreductases</term>
<term>Plant Proteins</term>
<term>Protein Isoforms</term>
<term>Recombinant Fusion Proteins</term>
<term>Thioredoxin-Disulfide Reductase</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Chloroplast Proteins</term>
<term>Cysteine</term>
<term>Glutathione</term>
<term>Iron-Sulfur Proteins</term>
<term>Oxidoreductases</term>
<term>Plant Proteins</term>
<term>Protein Isoforms</term>
<term>Recombinant Fusion Proteins</term>
<term>Thioredoxin-Disulfide Reductase</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>5,5'-Dithiobis(acide 2-nitro-benzoïque)</term>
<term>Glutarédoxines</term>
<term>NADP</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plastids</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Cystéine</term>
<term>Ferrosulfoprotéines</term>
<term>Glutarédoxines</term>
<term>Isoformes de protéines</term>
<term>Oxidoreductases</term>
<term>Plastes</term>
<term>Populus</term>
<term>Protéines chloroplastiques</term>
<term>Protéines de fusion recombinantes</term>
<term>Protéines végétales</term>
<term>Thioredoxin-disulfide reductase</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cytosol</term>
<term>Plant Cells</term>
<term>Plastids</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cellules végétales</term>
<term>Cystéine</term>
<term>Cytosol</term>
<term>Ferrosulfoprotéines</term>
<term>Glutathion</term>
<term>Isoformes de protéines</term>
<term>Oxidoreductases</term>
<term>Plastes</term>
<term>Protéines chloroplastiques</term>
<term>Protéines de fusion recombinantes</term>
<term>Protéines végétales</term>
<term>Thioredoxin-disulfide reductase</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Base Sequence</term>
<term>Catalytic Domain</term>
<term>Enzyme Activation</term>
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Enzymologic</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genes, Plant</term>
<term>Molecular Sequence Data</term>
<term>Mutagenesis, Site-Directed</term>
<term>Oxidation-Reduction</term>
<term>Solubility</term>
<term>Spectrometry, Mass, Electrospray Ionization</term>
<term>Substrate Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Activation enzymatique</term>
<term>Analyse de profil d'expression de gènes</term>
<term>Domaine catalytique</term>
<term>Données de séquences moléculaires</term>
<term>Gènes de plante</term>
<term>Mutagenèse dirigée</term>
<term>Oxydoréduction</term>
<term>Régulation de l'expression des gènes codant pour des enzymes</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Solubilité</term>
<term>Spectrométrie de masse ESI</term>
<term>Spécificité du substrat</term>
<term>Séquence d'acides aminés</term>
<term>Séquence nucléotidique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plant thioredoxins (Trxs) constitute a complex family of thiol oxidoreductases generally sharing a WCGPC active site sequence. Some recently identified plant Trxs (Clot, Trx-like1 and -2, Trx-lilium1, -2, and -3) display atypical active site sequences with altered residues between the two conserved cysteines. The transcript expression patterns, subcellular localizations, and biochemical properties of some representative poplar (Populus spp.) isoforms were investigated. Measurements of transcript levels for the 10 members in poplar organs indicate that most genes are constitutively expressed. Using transient expression of green fluorescent protein fusions, Clot and Trx-like1 were found to be mainly cytosolic, whereas Trx-like2.1 was located in plastids. All soluble recombinant proteins, except Clot, exhibited insulin reductase activity, although with variable efficiencies. Whereas Trx-like2.1 and Trx-lilium2.2 were efficiently regenerated both by NADPH-Trx reductase and glutathione, none of the proteins were reduced by the ferredoxin-Trx reductase. Only Trx-like2.1 supports the activity of plastidial thiol peroxidases and methionine sulfoxide reductases employing a single cysteine residue for catalysis and using a glutathione recycling system. The second active site cysteine of Trx-like2.1 is dispensable for this reaction, indicating that the protein possesses a glutaredoxin-like activity. Interestingly, the Trx-like2.1 active site replacement, from WCRKC to WCGPC, suppresses its capacity to use glutathione as a reductant but is sufficient to allow the regeneration of target proteins employing two cysteines for catalysis, indicating that the nature of the residues composing the active site sequence is crucial for substrate selectivity/recognition. This study provides another example of the cross talk existing between the glutathione/glutaredoxin and Trx-dependent pathways.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22523226</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>10</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-2548</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>159</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2012</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Atypical thioredoxins in poplar: the glutathione-dependent thioredoxin-like 2.1 supports the activity of target enzymes possessing a single redox active cysteine.</ArticleTitle>
<Pagination>
<MedlinePgn>592-605</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.112.197723</ELocationID>
<Abstract>
<AbstractText>Plant thioredoxins (Trxs) constitute a complex family of thiol oxidoreductases generally sharing a WCGPC active site sequence. Some recently identified plant Trxs (Clot, Trx-like1 and -2, Trx-lilium1, -2, and -3) display atypical active site sequences with altered residues between the two conserved cysteines. The transcript expression patterns, subcellular localizations, and biochemical properties of some representative poplar (Populus spp.) isoforms were investigated. Measurements of transcript levels for the 10 members in poplar organs indicate that most genes are constitutively expressed. Using transient expression of green fluorescent protein fusions, Clot and Trx-like1 were found to be mainly cytosolic, whereas Trx-like2.1 was located in plastids. All soluble recombinant proteins, except Clot, exhibited insulin reductase activity, although with variable efficiencies. Whereas Trx-like2.1 and Trx-lilium2.2 were efficiently regenerated both by NADPH-Trx reductase and glutathione, none of the proteins were reduced by the ferredoxin-Trx reductase. Only Trx-like2.1 supports the activity of plastidial thiol peroxidases and methionine sulfoxide reductases employing a single cysteine residue for catalysis and using a glutathione recycling system. The second active site cysteine of Trx-like2.1 is dispensable for this reaction, indicating that the protein possesses a glutaredoxin-like activity. Interestingly, the Trx-like2.1 active site replacement, from WCRKC to WCGPC, suppresses its capacity to use glutathione as a reductant but is sufficient to allow the regeneration of target proteins employing two cysteines for catalysis, indicating that the nature of the residues composing the active site sequence is crucial for substrate selectivity/recognition. This study provides another example of the cross talk existing between the glutathione/glutaredoxin and Trx-dependent pathways.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chibani</LastName>
<ForeName>Kamel</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>UMR 1136 Lorraine University-INRA, Interactions Arbres-Microorganismes, Institut Fédératif de Recherche 110 Ecosystèmes Forestiers, Agroressources, Bioprocédés, et Alimentation, Faculté des Sciences, Vandoeuvre-lès-Nancy, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tarrago</LastName>
<ForeName>Lionel</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gualberto</LastName>
<ForeName>José Manuel</ForeName>
<Initials>JM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wingsle</LastName>
<ForeName>Gunnar</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rey</LastName>
<ForeName>Pascal</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jacquot</LastName>
<ForeName>Jean-Pierre</ForeName>
<Initials>JP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rouhier</LastName>
<ForeName>Nicolas</ForeName>
<Initials>N</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>JQ407766</AccessionNumber>
<AccessionNumber>JQ407767</AccessionNumber>
<AccessionNumber>JQ407768</AccessionNumber>
<AccessionNumber>JQ407769</AccessionNumber>
<AccessionNumber>JQ407770</AccessionNumber>
<AccessionNumber>JQ407771</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>04</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D060365">Chloroplast Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007506">Iron-Sulfur Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020033">Protein Isoforms</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011993">Recombinant Fusion Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>52500-60-4</RegistryNumber>
<NameOfSubstance UI="D013879">Thioredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>53-59-8</RegistryNumber>
<NameOfSubstance UI="D009249">NADP</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9BZQ3U62JX</RegistryNumber>
<NameOfSubstance UI="D004228">Dithionitrobenzoic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.18.-</RegistryNumber>
<NameOfSubstance UI="C021588">ferredoxin-thioredoxin reductase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.1.9</RegistryNumber>
<NameOfSubstance UI="D013880">Thioredoxin-Disulfide Reductase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K848JZ4886</RegistryNumber>
<NameOfSubstance UI="D003545">Cysteine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020134" MajorTopicYN="N">Catalytic Domain</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060365" MajorTopicYN="N">Chloroplast Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003545" MajorTopicYN="N">Cysteine</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003600" MajorTopicYN="N">Cytosol</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004228" MajorTopicYN="N">Dithionitrobenzoic Acid</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004789" MajorTopicYN="N">Enzyme Activation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015971" MajorTopicYN="N">Gene Expression Regulation, Enzymologic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007506" MajorTopicYN="N">Iron-Sulfur Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016297" MajorTopicYN="N">Mutagenesis, Site-Directed</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009249" MajorTopicYN="N">NADP</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="N">Oxidoreductases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059828" MajorTopicYN="N">Plant Cells</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018087" MajorTopicYN="N">Plastids</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020033" MajorTopicYN="N">Protein Isoforms</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011993" MajorTopicYN="N">Recombinant Fusion Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012995" MajorTopicYN="N">Solubility</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021241" MajorTopicYN="N">Spectrometry, Mass, Electrospray Ionization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013880" MajorTopicYN="N">Thioredoxin-Disulfide Reductase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013879" MajorTopicYN="N">Thioredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>4</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>4</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>10</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22523226</ArticleId>
<ArticleId IdType="pii">pp.112.197723</ArticleId>
<ArticleId IdType="doi">10.1104/pp.112.197723</ArticleId>
<ArticleId IdType="pmc">PMC3375927</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2011 Aug 5;286(31):27515-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21632542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2006 Sep 22;348(2):478-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16884685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biopolymers. 2000-2001;56(1):1-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11582571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2008 Jul;133(3):599-610</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18422870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Aug 22;283(34):23062-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18552403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1985;54:237-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3896121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2009 Mar 1;46(5):579-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19111609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2000 Feb 11;467(2-3):245-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10675547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2004 Feb 3;43(4):945-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14744138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Dec;136(4):4088-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15531707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1992 Sep 29;31(38):9288-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1390715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1997 Mar 4;36(9):2622-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9054569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Mar;134(3):1027-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14976238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2003 Feb;268(5):692-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12589444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2008;59:143-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18444899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Jan;63(1):365-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21948853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Jul 10;284(28):18963-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19457862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2008 Jul;10(7):1235-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18377232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jun 27;278(26):23747-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12707279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2003 Dec 18;555(3):443-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14675753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2005 Dec;86(3):419-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16307307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Bioinformatics. 2008;2008:420747</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19956698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biochem. 2010;11:3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20074363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Jun 8;26(5):717-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17560376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Feb 27;279(9):7537-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14676218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Apr 10;284(15):10150-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19181668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2009 Mar;2(2):308-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19825616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 Jan 1;16(1):17-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21707412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Apr 19;277(16):13609-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11832487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2988-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16481623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1981 Aug;68(2):300-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16661905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Oct 5;101(40):14545-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15385674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Dec;142(4):1364-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17071643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 1991;11(1):13-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1961698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Feb 17;48(6):1410-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19166312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Jun;19(6):1851-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17586656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):14144-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11717467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2006 Jul;11(7):329-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16782394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Feb 2;282(5):3367-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17135266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Sep;18(9):2356-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16891402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 May;22(5):1498-515</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20511297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Mar;134(3):1006-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14976236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 Mar 15;16(6):567-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22053845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):11014-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9724821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2007 May 4;368(3):800-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17368484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 2000 Jun;51:371-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2006;57(8):1685-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16720602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Nov;13(11):2539-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11701887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2010 Sep;61(14):4043-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20616155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2011 Apr 6;585(7):1077-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21385584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2007 Sep 18;581(23):4371-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17761174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2010 Oct;13(8):1205-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20136512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Jun;14(6):1417-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12084836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Aug 29;283(35):23863-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18579519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jan 30;279(5):3142-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14607844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Apr 3;284(14):9299-310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19158074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 May 14;285(20):14964-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20236937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3900-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20133584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Mar;149(3):1240-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19109414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Apr 4;283(14):8868-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18216016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1999 Apr 20;38(16):5200-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10213627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2010 Jan;19(1):190-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19902501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2007 Jun;51(6):343-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17431629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2009 Jun;70(3):273-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19259774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Jan;41(1):31-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15610347</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Grand Est</li>
<li>Lorraine (région)</li>
</region>
<settlement>
<li>Nancy</li>
<li>Vandœuvre-lès-Nancy</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Gualberto, Jose Manuel" sort="Gualberto, Jose Manuel" uniqKey="Gualberto J" first="José Manuel" last="Gualberto">José Manuel Gualberto</name>
<name sortKey="Jacquot, Jean Pierre" sort="Jacquot, Jean Pierre" uniqKey="Jacquot J" first="Jean-Pierre" last="Jacquot">Jean-Pierre Jacquot</name>
<name sortKey="Rey, Pascal" sort="Rey, Pascal" uniqKey="Rey P" first="Pascal" last="Rey">Pascal Rey</name>
<name sortKey="Rouhier, Nicolas" sort="Rouhier, Nicolas" uniqKey="Rouhier N" first="Nicolas" last="Rouhier">Nicolas Rouhier</name>
<name sortKey="Tarrago, Lionel" sort="Tarrago, Lionel" uniqKey="Tarrago L" first="Lionel" last="Tarrago">Lionel Tarrago</name>
<name sortKey="Wingsle, Gunnar" sort="Wingsle, Gunnar" uniqKey="Wingsle G" first="Gunnar" last="Wingsle">Gunnar Wingsle</name>
</noCountry>
<country name="France">
<region name="Grand Est">
<name sortKey="Chibani, Kamel" sort="Chibani, Kamel" uniqKey="Chibani K" first="Kamel" last="Chibani">Kamel Chibani</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002B93 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002B93 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22523226
   |texte=   Atypical thioredoxins in poplar: the glutathione-dependent thioredoxin-like 2.1 supports the activity of target enzymes possessing a single redox active cysteine.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22523226" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020